

Déformations thermocapillaires d'interfaces liquides molles pilotées par une onde laser continue.

David Rivière

Sous la direction de Jean-Pierre Delville et de Julien Petit Le 05 Juin 2012

Sommaire

- I. Mécanisme de déformation
- II. Système fluide et dispositif expérimental
- III. Analyses et interprétations des résultats
- IV. Conclusion et perspectives

Mécanisme de déformation

Modèle ID : $\frac{dh}{dx} = \frac{2}{3g(\rho_1 - \rho_2)} \frac{\eta_1 H_2^2 - \eta_2 H_1^2}{\eta_1 H_1 H_2^2 + \eta_2 H_2 H_1^2} \frac{d\gamma}{dT} \frac{dT}{dx}$

Système fluide : phases de Winsor

<u>Composition :</u>

Mélange liquide saumure, heptane, AOT (surfactant)

<u>Equilibre utilisé :</u>

Equilibre de phase deWinsor I ⇒Phase heptane transparente ⇒Phase aqueuse : phase micellaire de microémulsion (micelles d'huiles dans l'eau)

Très faible tension interfaciale

 $\Rightarrow \gamma \approx 6.10^{-6} N / m$

Interface séparant les phases liquides très déformable

Dispositif expérimental

Observation des écoulements et déformations thermocapillaires

$$\vec{\nabla}\gamma = \frac{d\gamma}{dT}\vec{\nabla}T$$

Profils de déformation en fonction de la puissance laser (cas H_e≈ H_h)

 $\eta_e = 0.890 mPa.s$ $\eta_h = 0.393 mPa.s$

→ h(x) croit dans le sens du gradient de température

Profils de déformation en fonction de la puissance laser (cas H_e≈ 3H_h)

 $\eta_e = 0.890 mPa.s$ $\eta_h = 0.393 mPa.s$

→ h(x) décroit dans le sens du gradient de température

Hauteurs de déformation en fonction de la puissance laser

h(P) (µm)

Largeurs de déformation en fonction de la puissance laser

Largeur indépendante de la puissance laser (régime linéaire de déformation)

Largeurs de déformation en fonction du col du faisceau laser

→ Largeur de déformation décroit quand la largeur du faisceau au col augmente

➔ Comportement linéaire ?

→ Largeur de déformation dépend des hauteurs des phases liquides

➔ Insuffisance du modèle thermique à deux couches semiinfinies (heptane/phase aqueuse)

Nécessité modèle à 4 couches (verre/heptane/phase aqueuse/verre)

Conclusion et perspectives

Conclusion :

Observation des déformations thermocapillaires

Caractérisation du phénomène en fonction des paramètres du problème.

> Résultats en accord qualitatif avec les prédictions d'un modèle ID.

<u>Perspectives :</u>

- Mesure de la vitesse des écoulements.
- Déstabilisation de l'interface ?
- Comparaison avec un modèle 2D de chauffage (H. Chraïbi et J-P. Delville,

Thermocapillary flows and interface deformations produced by localized laser heating in confined environment, Physics of fluids 24, 032102, 2012).